

iMG Elite Arm Extension

Player Head Acceleration Exposure Monitoring

Biomechanical Mechanism of Head Accelerations and Concussion

iMG Validation

- Extreme differences in kinematics reported
- Restricts cross study comparison
- <u>Challenge</u>: What are realistic head kinematic signals

Sports Medicine

Original research

Ready for impact? A validity and feasibility study of instrumented mouthguards (iMGs) FREE

© Ben Jones ^{1, 2, 3, 4, 5}, James Tooby ¹, Dan Weaving ¹, © Kevin Till ^{1, 3}, © Cameron Owen ^{1, 2}, Mark Begonia ⁶, © Keith A Stokes ^{7, 8}, Steven Rowson ⁶, © Gemma Phillips ^{1, 2, 9}, © Sharief Hendricks ^{1, 4}, © Éanna Cian Falvey ^{10, 11}, Marwan Al-Dawoud ¹, © Gregory Tierney ¹²

Biomechanical Approach

Level of fundamental/manual solving to get a result

Basics of a Signal

Amplitude (A)

Maximum displacement from an equilibrium value.

Frequency (f)

Number of cycles per second measured in Hertz (Hz)

Angular frequency (ω)

Measures angular displacement each second (rad/s)

Angular frequency = $\,\omega\,=2\pi f$

Basics of a Signal

Rigid Body Mechanics – Elastic Head Impact

Spring mass system to represent head impact:

$$m\ddot{x}(t) + kx(t) = 0$$

For known initial velocity

$$a(t) = -v \sqrt{\frac{k}{m}} \sin(\sqrt{\frac{k}{m}}t)$$
Amplitude (A₀) Angular Frequency

Key: m = Head Mass v = Head Velocity k = Head Stiffness a = Head Acceleration

Rigid Body Mechanics – Elastic Head Impact

$$a(t) = -v \sqrt{\frac{k}{m}} \sin(\sqrt{\frac{k}{m}}t)$$
Max Amplitude (A₀) Angular Frequency

Key: m = Head Mass k = Head Stiffness v = Head Velocity a = Head Acceleration

Biomechanical Approach

Level of fundamental/manual solving to get a result

Basics of a Signal

Causes of Frequency Spectrum during head impacts

True Signal

Complex contact characteristics and dynamics

Noise

Caused by errors in measurement system and mathematical calculations

Artefacts

To be discussed

Head Impact Testing Lab

Padded Impactor (VN foam)

Rigid Impactor (Nylon)

Headform

- 3 accelerometers
- Tri-axial angular rate sensor
- 20 kHz (No Filter)

Testing Protocol

- 2 impact Locations
- 6 impact magnitudes (25-150 g)
- 2 impact contact conditions (padded and rigid)
- 3 impacts per condition
- 72 impacts total

Head Impact Testing Lab

 $\times 10^{-3}$

Head Impact Testing Lab

Wavelet Transformations

	Linear Acceleration (Hz)	Angular Velocity (Hz)
Median	106	24
Max Value	311	78

Comparison to Cadaver Tests

Wu et al. 2016. J Biomech

Biomechanical Approach

Artefacts

Sources of Artefacts

- Shouting
- Poor fit
- Biting
- Mandible interference
- Direct impact to iMG
- Sensor vibration

Methods

- Participants (Northern Hem)
 - 4 male and 3 female elite teams
- Prevent Biometrics custom fit iMGs
- Accelerometer and gyroscope sampling at 3200 Hz
- 5695 head acceleration events
- Raw data showed <u>71</u> impacts greater than 150 g (resultant) at head Centre of Gravity (CG)

>150 g events – Wavelet Transformations

Primary Frequency at Impact Pulse

Linear Acceleration 1400 1200 1000 800 600 400 200 Laboratory iMG

Angular Velocity

>150 g events - Artefact

Ulster University

Artefact Example

 Transform from iMG to Head CG without filtering

Head CG (no filter) = 362 g

>150 g events - Artefact

>150 g events - Cleaner

Cleaner Example

Ulster University

>150 g events - Cleaner

Ulster University

Artefact Example

 Transform from iMG to Head CG without filtering

Head CG (no filter) = 95 g

iMG Validation

- Extreme differences in kinematics reported
- Restricts cross study comparison
- <u>Challenge</u>: What are realistic head kinematic signals

Post-processing of iMG signals

Biocore-FRI HitlQ

ORB

Prevent

Conclusion

Theory

 Impact pulse/frequency influenced by impact conditions (e.g., mass and stiffness)

Laboratory

- Acceleration -> Haversine pulse; Velocity -> S-shaped pulse
- Frequency during impact pulse relatively low

On-field

- Artefacts characterised by high-frequency, relatively high amplitude components in signal
- Artefacts produce erroneous and high peak kinematics at Head CG

Acknowledgments

James Tooby

James Woodward

iMG Elite Arm Project

Project team:
Dr Éanna Falvey
Prof Ross Tucker
Dr Danielle Salmon & team
Dr Melanie Bussey & team
Ben Hester & team
James Tooby
James Woodward
Lindsay Starling

All Participating clubs

Thank you for listening!

Can we assess iMG signal quality on the field?

Dr Gregory Tierney Ulster University

